POWELL–SABIN SPLINE WAVELETS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biorthogonal Spline Type Wavelets

Let φ be an orthonormal scaling function with approximation degree p−1, and let Bn be the B-spline of order n. Then, spline type scaling functions defined by f̄n = f ∗Bn (n = 1, 2, . . . ) possess higher approximation order, p+n−1, and compact support. The corresponding biorthogonal wavelet functions are also constructed. This technique is extended to the case of biorthogonal scaling function sy...

متن کامل

Generalized Spline Wavelets

l j l ZZ r g Then r are called orthogonal wavelets of multiplicity r if B forms an orthonormal basis of L IR We say that r are wavelets prewavelets of multiplicity r if B forms a Riesz basis of L IR and j l is orthogonal to k n f r g l n j k ZZ with j k The general theory of wavelets of multiplicity r is treated in As usual the method is based on a generalization of the notion of multiresolutio...

متن کامل

C Spline Wavelets on Triangulations

In this paper we investigate spline wavelets on general triangulations. In particular, we are interested in C1 wavelets generated from piecewise quadratic polynomials. By using the Powell-Sabin elements, we set up a nested family of spaces of C1 quadratic splines, which are suitable for multiresolution analysis of Besov spaces. Consequently, we construct C1 wavelet bases on general triangulatio...

متن کامل

On Strr Omberg's Spline{wavelets

We provide a simple representation of Strr omberg's wavelets which was studied in Strr omberg'83]. This representation enables us to compute those wavelets eeciently. We point out the multiresolution approximation associated with this wavelet and the connection with Chui-Wang's cardinal spline wavelet. A generalization of Strr omberg's wavelet is also given.

متن کامل

C1 spline wavelets on triangulations

In this paper we investigate spline wavelets on general triangulations. In particular, we are interested in C1 wavelets generated from piecewise quadratic polynomials. By using the Powell-Sabin elements, we set up a nested family of spaces of C1 quadratic splines, which are suitable for multiresolution analysis of Besov spaces. Consequently, we construct C1 wavelet bases on general triangulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Wavelets, Multiresolution and Information Processing

سال: 2004

ISSN: 0219-6913,1793-690X

DOI: 10.1142/s0219691304000342